One-Class Conditional Random Fields for Sequential Anomaly Detection
نویسندگان
چکیده
Sequential anomaly detection is a challenging problem due to the one-class nature of the data (i.e., data is collected from only one class) and the temporal dependence in sequential data. We present One-Class Conditional Random Fields (OCCRF) for sequential anomaly detection that learn from a one-class dataset and capture the temporal dependence structure, in an unsupervised fashion. We propose a hinge loss in a regularized risk minimization framework that maximizes the margin between each sequence being classified as “normal” and “abnormal.” This allows our model to accept most (but not all) of the training data as normal, yet keeps the solution space tight. Experimental results on a number of real-world datasets show our model outperforming several baselines. We also report an exploratory study on detecting abnormal organizational behavior in enterprise social networks.
منابع مشابه
Annotation of Human Motion Capture Data using Conditional Random Fields
Human motion classification is a challenging task since human motion lacks clear categorical structure. A reliable classifier can be used in anomaly detection, gait disease diagnosis, and content-based video querying. Moreoever, human motion classifier can be used in constructing motion capture database to eliminate manual labelling phase. Most of the proposed algorithms employ Hidden Markov Mo...
متن کاملRobust and efficient intrusion detection systems
INTRUSION Detection systems are now an essential component in the overall network and data security arsenal. With the rapid advancement in the network technologies including higher bandwidths and ease of connectivity of wireless and mobile devices, the focus of intrusion detection has shifted from simple signature matching approaches to detecting attacks based on analyzing contextual informatio...
متن کاملSentence Boundary Detection for Social Media Text
The paper presents a study on automatic sentence boundary detection in social media texts such as Facebook messages and Twitter micro-blogs (tweets). We explore the limitations of using existing rule-based sentence boundary detection systems on social media text, and as an alternative investigate applying three machine learning algorithms (Conditional Random Fields, Naïve Bayes, and Sequential ...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملLearning from Imbalanced Multiclass Sequential Data Streams Using Dynamically Weighted Conditional Random Fields
The present study introduces a method for improving the classification performance of imbalanced multiclass data streams from wireless body worn sensors. Data imbalance is an inherent problem in activity recognition caused by the irregular time distribution of activities, which are sequential and dependent on previous movements. We use conditional random fields (CRF), a graphical model for stru...
متن کامل